مركز أبحاث البناء

Building \& Construction

Rescarch Center

بـسم السّ الرحمـن الرحيـم

$$
\begin{aligned}
& \text { ورششـة عمل }
\end{aligned}
$$

د.معتضم بعباع
 جامعة الجاح الوطنية - نابلس

Palestine - Ramallah, P.O Box 170. Tel: 97222403768 / 97059877143 - Fax: 97222950234
www. bcrc-pal.org

طرق عمليـة للعزل الحراري للمباني القائمـــــة
 والتي في طور الإنشــــاء

البناء المحلي

تتميز المنشآت المحلية باعتمادها الكلي تقريبـا على مـادتي الخرسـانة والحجـر كعناصـر أساسـية في البنـاء، وبالرغم من اختلاف المواد المشقة من هاتين المادتين والطـرق المسـتعملة في البنــاء إلا أن عنصـرا مهمــا مشـتركا بينهها ألا وهو انخفاض العازلية الحرارية للجـدران أو الأسـقف والأرضـيات الـتي تبنـى بهــا, حيـث أنـه هـن المعروف أن معامـل التوصـيل الحـراري للحجـر و الخرسـانة ومشـتقاتهما كــالطوب والقصـارة يزيـد عـن 12) BTU/hr.ft².Fº لا يزيد معامل التوصيل له عن (1.1 BTU/hr.ft².For أي أقل من العشر تقريبا، ناهيك عن صعوبة إضافة مواد عازلة بين طبقات المنشآت الخرسانية وسهولتها في المباني الخشبية أو الفولاذية التي تتكون عادة مـن طبقتين بينهما فراغ يمكن أن تضاف إليه أي مادة عازلة مناسبة.

إن ارتفاع معامل التوصيل الكلي للبناء الخرساني يجعل هذه المباني غير مريحة من الناحية المناخية لسـكانها فهي شديدة البرودة شتاء وشديدة الحر صيفا، ونظرا للقدرة التخزينية الهائلة لكتـل الخرسـانة الثقيلـة فإنهـا بالتأكيد تحتفظ ببرودتها أو بسخونتها لمدة طويلة، بحيث أننـا في كـثير مـن الأحيـان نشـعر أن الجـو داخـل المبنى أسوأ من خارجـه، فنجد أن الأشخاص لا يرغبون بالبقـاء داخـل منــازلهم صـيفا لشـدة حرهـا حتـى في ساعات الليل، ويشكون من شدة بردها في أيام الشتاء رغم أن جو بلادنا معتدل نسبيا. إضافة إلى عدم توفر المناخ المناسب لراحة الإنسان في هذه المبـاني كـذلك فـان تكلفـة التدفئــة والتكييـف لهـذه المباني عالية جدا وتفوق طاقة معظم فئات المجتمع المحلي الذي يعتبر بأغلبيته مسن ذوي الـدخل المحـدود، وفي نفس الوقت تعتبر الطاقة اللازمة للتدفئة والتكييف كالمحروقات والكهرباء عالية التكلفـة بـل أن تكلفتهـا تعتبر عالية جدا مقارنة مع معظم دول العالم الفقيرة والغنية، وهذا يشكل عبئا ماليا كبيرا على الفرد والدولة، وكان من أبرز نتائجهه عدم توفر وسائل التدفئة والتكييـف المناسـبة في معظـم المبــني السـكنية والمبــني العامـة ومدارس الأطفال، وهو ما يؤدي بالنهاية لتعرض الأفراد للإصابة بـالأمراض البسـيطة والأمـراض المزمنـة الـتي تؤثر على القلب والجهاز التنفسي والهضمي والمفاصل.
العزل الحراري حاليا :

بعد عملية مسح لعدد كبير من المباني المحلية السكنية والعامة تبين لنا أن أقل من •ب٪ من هذه المباني تشمل نوعا أو شكلا من أشكال العزل، ومعظم هذه المباني إما أنها أنشأت من مؤسسات دولية تهتم بعملية العـزل أو يملكها أفراد معينون لديهم إلمام بأهمية العزل. علما بأن أشكال العزل المتوفرة حاليا تتسم بما يلي : - العزل جزئي وغالبا ما يكون للجدران. - المواد العازلة المستعملة لها معمل عزل منخفض جدا مقارنة مع الأرقام المتعارف عليها عالميا

- سوء استعمال هذه المواد خلال عملية التنفيذ.
- عدم هناسبة المواد المستعملة لمواد الإنشاء المحلية. - وجود ضعف بقوة المنشأة أو أجزاء منها نتيجة إضافة العازل.

إن العيوب السابقة الذكر تجعل الفائدة المرجوة من عملية العزل دون المستوى المطلوب، أما الأسـباب الرئيسـة لهذه العيوب فهي :

- عدم توفر الوعي الكافي لدى المواطن والمهندس والمقاول لأهمية العزل الحراري للمباني. - عدم توفر الخبرة الكافية والتدريب الـلازم لـدى المهندسـين والعمـال في كيغيـة اسـتعمال هـواد العـزل المختلفة.
- رغبة الكثير من أصحاب البنايات أو المقاولين في توفير أي مصاريف (غير أساسية!) في المبنى. - عدم وجود أي أنظمة أو تعليمات ملزمة بالعزل الحراري كما هو الحال في دول العالم الغربي. - عدم قيام الخبراء والأكــاديميين المختصـين في مجـال البنـاء بمحاولـة عمليـة لحـل المشـكالات القائمـة واهتمامهم غالبا في نقل التكنولوجيا الغربية إلى بلادنا رغم عدم ملاءمتها في كثير من الأحيان.

> العزل الحراري المطلوب

عندما بدأت بالتفكير بحل مشكلة عدم توفر عزل مناسب في المباني المحلية وضعت مجموعة من الأسس الـتي يجب توفرها لضمان نجاح أي طريقة جديدة، وأهم هذه الأسس ما يلي : ا. انخفاض التكلفة إلى حد كبير بحيث لا تكون نسبة تكلفتها إلي تكلفة المبنى الكلية بسيطة جدا. r. استعمال مواد محلية أو مواد متوفرة باستمرار.

ب. المواد العازلة لها مقاومة عالية جدا نسبة لما هو موجود حاليا كما أنها لا تتغير مـع الـزمن ولا تتآكـل بغعل المناخ أو المواد الكيماوية أو الحشرات وغيرها.

؛. سهولة التنفيذ.
ه. ملاءمتها مع طرق البناء المحلية. 7. ملاءمتها مع الأشكال المختلفة للبناء. V ^. أنها لا تغير طبيعة المبنى من حيث الشكل أو المواد المستعملة، أي أن الساكن لا يشعر بأي فـرق عمـا اعتاد عليه. 9. أنها لا تضعف المبنى أو أي أجزاء منه. - ـ . التخلص من التخزين الحراري العالي نتيجة الكتل الضخمة التي تصل ما بـين داخـل المبنـى والجـو
الخارجي.

بناء على هذه الأسس فقد كانت /لاستراتيجية التي اعتمدت عليها تقوم على الأساس التالي: وجود غلافين في المبنى الأول خارجي هن الخرسانة والحجر وغيره نو هتانة عالية والآخر د/خلي قليل الوزن (لتقليل التخخزين فياه) ونو هتانتة عالية ومقبول محليا ، وهما منغصلان حراريا عن بعضهما البعض
بعازل فعال

وبطبيعة الحال كلا الغلافين متصلين ببعضهما البعض ولكن من خلال مـواد قليلـة التوصـيل للحـرارة بحيـث أنها لا تشكل جسورا حرارية بينها.

إن الطريقة الوحيدة الفعالة لعزل الجدران أو الأسقف حراريا تتم حاليا من خلال استعمال مـادة البولسـتر يـن
 البولسترين في الأسقف أو الأرضيات. ووفقا للوحدات البريطانية فان عازلية ألواح البولستر يـن تسـاوي تقريبـا لكل اسم سماكة. أي أن قيمة العازليـة للجـدران يمكـن أن تتضـاعف عنـد وضـع لـوح سماكتـه باسـم، ولكـن هـذه المقاومـة الحراريـة تبقـى بعيـدة جــدا عـن الحـد الأدنـى المطلـوب وهـو 12) رغم أن هذا الرقم قد رفعت قيمته كما حددته المواصفات الجديدة في الولايات المتحدة وأصبح (24 hr.ft².Fº/BTU)

الرسم التالي يبين طريقة وضع لوح الكلكل في جدار من الحجر و الخرسانة والطوب

شكل (1) رسم توضيحي يبين طريقة وضع لوح الكلكل ما بين الطوب والخرسانة في الجدران المحلية.
إن هذه الطريقة تتسم بعدد كبير من العيوب أهمها :

1. إن تقسيم الجدار إلى قسمين سيؤدي بالتأكيد إلى إضعاف متانته.
r r. إن عملية صب الخرسانة إلى جانب ألواح الكلكل ستؤدي إلى تكسر أجزاء منهــا أو تسـرب الخرسـانة بين الألواح المختلفة وهو ما سينتج عنه جسور حرارية. r. r. لا يمكن وضع الألواح في الأعمدة أو الجسور. ؟. إن مادة البولستر ين حساسة جدا لكثير من المواد الكيماوية المتطايرة كالكحول ومشـتقات الـنفط، لـذا فإنها غالبا ما تختفي وتذوب بعد عدة سنوات جزئيا أو كليا. ه. بعض الحشرات تقوم بتغتيتها إلى أجزاء صغيرة. I. لا يمكن وضعها عند نقاط الالتقاء بين الجدران والأسقف والأرضيات.
 ^. لا يمكن عمل هذه الطريقة في مبان قائمة دون إزالة الجدار أو إضافة جدار جديد وسميك إلى جواره 9. إن العازل (الكلكل) موضوع داخل الجدار وبعد مسافة ليست قليلة من جو الغرفة الداخلي.

كما بينت سابقا أن الطريقة النعالة للعزل يجب أن تقوم على أسـاس وجـود غلافـين أحـدهما داخلـي رقيـق ومتين والآخر خارجي قوي ويفصل بينهما طبقة مناسبة من مادة شـديدة المقاومـة للحـرارة كمـا هـو موضح في الرسم التوضيحي التالي :

شكل (Y) رسم توضيحي يبين مبدأ وجود غلافين داخلي وخارجي معزولين تماما عن بعضهما
وبعد دراسة لمواد العزل المتوفرة حاليا تبين لنا أن أهم هذه المواد ما يلي :

- فرشات الصوف الصخري أو الزجاجي وهي قليلة التكلفة.
- ألواح البولستر ين أو الكلكل وهي قليلة التكلفة نسبيا.
- ألواح الفوم الصلب (البولثيريين) وهي جيدة المواصفات إلا أنها عالية التكلفة نسبيا.

والطريقة المتترحة يمكن من خلالها استعمال أي من المواد الثلاث إلا أن مادة الصوف الصـخري أو الزجـاجي هي الأكثر تفضيال للأسباب التالية

- هي أقلها من حيث التكلغة.
- وجود فرشات مثبت على أحد وجهيها طبقة رقيقة من الألمنيوم لعزل الرطوبة. - إمكانية وضعها في الزوايا والمنحنيات وتشكيله بسهولة دون تكسيرها. - عدم تأثرها بأي مؤثرات مناخية أو كيماوية أو حشرية مع الزمن. - يمكن ضغطها بسهولة عند اللزوم.

أما الطريقة المقترحة لتركيبها فمن الممكن عملها في المباني القائمة أي فوق طبقة القصارة الحاليـة أو في المبــني قد الإنشاء وقبل القصارة. أما المادة المستعملة للربط بين الغلافين الداخلي والخارجي فهي عوارض (مورينـات)
 مسافات تتناسب مع عرض فرشة الصوف الصخري المتوفر (•؟-•هسم عادة) ، والطريقة كما يلي: 1. تثبت العوارض الخشبية بشكل عمودي ومتوازي على الجدران وأفقيا على السـقف علـى امتـدادا عـوارض الجدران. ويتم التثبيت بواسطة براغي مع محشرات بلاستيكية لمنع تسرب الحرارة قدر الإمكان. r. تثبت فرشات الصوف الصخري بين العوارض على الجدران والأسقف. س. يثبت فوقها شبك معدني خفيف ويكون مشدودة مثبتا بعناية بالعوارض الخشبية. ؟. تتم قصارة السقف والجدران على الشبك كما هو الحال في القصارة العادية. ه. عند التتحات كالشبابيك مثلا توضع العـوارض الخشـبية كـبرواز لمنـع ظهـور العـازل مـن تلـك الفتحـات وللمساعدة في تثبيت إطارات الشبابيك وغيرها.

الرسم التالي يوضح طريقة إضافة العازل للأسقف والجدران

Concrete Roof

الشكل (†) تثبيت العازل على السقف

شكل (؟) رسم توضيحي يبين طبقات الجدار بعد إضافة العازل

المقاومة الحراريـة

إن إضافة الصوف الصخري إلى السقف والجدار ستؤدي إلى رفع المقاومة الحرارية بشكل كبير، وتـتراوح قيمـة المقاومة الحرارية للصوف الصخري ما بين (1-2.5 hr.ft².F\%/ BTU) لكل 1 سم سماكـة وذلـك حسـب طريقـة التصنيع والمواد المحسنة وغيرها. وحيث أن المقاومة الحرارية لجدار محللي مـن الحجـر والخرسـانة والطـوب والقصارة (سمك 0 سم) تساوي تقريبا (2.2 hr.ft².Fº/BTU) فإن إضافة غسم من الصوف الصـخري يمكـن أن ترفع هذه القيمة إلى أكثر من (12 hr.ft².F\%/BTU) وهي القيمة المطلوبة كحد أدنى في بردنا، إضافة إلى أن هذه الطبقة من العازل تغطي الجدار والأعمدة والجسور، وهي لا تكون أي جسور حرارية مع الغلاف الخارجي. من المهم هنا الملاحظة أن الشبك المعدني رغم أنه ليس سميكا إلا أنـه يقـدم فائـدتين: فهـو يسـاعد في تثبيـت القصارة فوق العازل بسهولة، كما أنه يجعل القصارة شديدة القوة والتماسك بحيث يصعب كسـرها أو تشـققها رغم أن سمكها لا يتجاوز في معظم الأحيان ه, اسم.

-
 Ring \& Construct

صورة (1) طرسقة تثبيت الصوف الصخري بين العوارض الخشبية وقبل وضع الشبك عليه

صورة (ץ) وضع الصوف الصخري على جدار جديد قبل القصارة

Research Center

صورة (†) تثبيت الصوف الصخري على السقف (لاحظ السمك حيث أنه أكبر من الجدار)

